Senior Research Fellow
Dipl. Chem. Dr. rer. nat. Eckhard Ströfer
FB Maschinenbau und Verfahrenstechnik
Lehrstuhl für Thermodynamik
RPTU Kaiserslautern
Erwin-Schrödinger-Straße 44
Gebäude 44/415
67663 Kaiserslautern
E-Mail: auf Anfrage beim Sekretariat
Projektbeschreibung
Innovation
Skalierung von Wertschöpfungsketten / Scaling of value chains
Chemical value added chains connect the raw materials of our planet with the markets for products and energy. The chemical industry is the "Materials Supplier" for downstream customers.
Chemical value chains evolve according to progress in technology and changes in the social and economic environment. This evolution is global, but takes advantage of local strengths and specialities. The analysis of the state of the art and the prognosis of future developments in space and time lead to the identification of strongpoints for R&D.
The innovation of value added chains is strongly driven by technology. The whole portfolio of knowledge on thermodynamics, reaction kinetics and engineering must be applied. This will result in an economic and ecological optimisation of reactors, work-up and Verbund structures.
Specialities: Phosgenations, Hydrogenations, Trioxane & Formaldehyde, Electronic grade products, Inorganics, Recycle of residues & hydrogenchloride; Evalution of technlogies & Verbund systems
• Watzenberger O., Ströfer E. and Anderlohr A. (1999), Unsteady-State Oxidative Dehydrogenation of Ethylbenzene to Form Styrene. Chem. Eng. Technol., 22: 659-662
• Neudert, R., Ströfer, E. and Bremser, W. (1986), On-line NMR in process engineering. Magn. Reson. Chem., 24: 1089-1092
• Wölfert, A., Cheng, T.C., Ströfer, E. and Gilbert, N. (2001), Application of CFD-Simulations for Optimising Mixing in Reacting Flows. Chemie Ingenieur Technik, 73: 628-630
• Grützner Th., Hasse H., Lang N., Siegert M., Ströfer E. (2007), Development of a new industrial process for trioxane production, Chemical Engineering Science, Volume 62, Issues 18-20: 5613-5620
Rohstoffwandel / Raw Material Change
Une réformation des chaînes de valeur des polyisocyanates aromatiques et aliphatiques basées sur les hydrocarbures bio-fonctionnalisés
Les polyuréthanes, obtenus à partir de la réaction d'un polyisocyanate avec un polyol, sont les matériaux plastiques les plus polyvalents. C'est la raison pour laquelle les chaînes de valeur de polyisocyanates, et la possibilité de les baser sur des matières premières renouvelables, sont techniquement et économiquement intéressantes. La substitution des ressources fossiles par les ressources renouvelables rend généralement le processus plus complexe, mais les procédés de production de polyisocyanates aliphatiques et aromatiques sont une exception. Les chaînes de valeur redessinées sont basées sur la combinaison des connaissances existantes et sont moins compliquées grâce à l'utilisation d'hydrocarbures bio-fonctionnalisés. Le nouveau design pour la production d'isocyanates aliphatiques et aromatiques et la comparaison avec leurs itinéraires classiques avec l'utilisation de ressources fossiles est illustré dans cet article.
A new design of the aliphatic and aromatic polyisocyanates value chains based on bio-functionalised hydrocarbons
Polyurethanes, obtained from the reaction of a polyisocyanate with a polyol, are the most versatile kind of plastic materials. This is the reason why polyisocyanates value chains, and the possibility to base them on renewable raw material, are technically and economically interesting. The substitution of fossil resources by renewable resources usually makes the process more complex, but the processes for the production of aliphatic and aromatic polyisocyanates are an exception. The redesigned value chains are based on the combination of existing knowledge and are less complicated thanks to the use of bio-functionalized hydrocarbons. The new design for the production of aliphatic and aromatic isocyanates and the comparison with their classical routes with the use of fossil resources is illustrated in this article.
• Burger, J., Ströfer, E. and Hasse, H. (2016), Process Design in World 3.0 - Challenges and Strategies to Master the Raw Material Change. Chem. Eng. Technol., 39: 219-224
• Tsai S.-W., Ströfer E. (2013), 明日世界之能源供給與化學品加值鏈, Chemical Engineering (The Chinese I. Ch. E.), 60: 83 - 89
Plasmen & OME (Polyoxymethylendimethylether) / Plasmas & OME
• Homann K.H., Ströfer E. (1983) Charged Soot Particles in Unseeded and Seeded Flames. In: Lahaye J., Prado G. (eds) Soot in Combustion Systems and Its Toxic Properties. NATO Conference Series (VI Materials Science), vol 7. Springer, Boston, MA
• Faubel, C., Hoyermann, K., Ströfer, E. and Wagner, H. Gg. (1979), Untersuchungen zur Reaktion von Wasserstoffatomen mit Dimethyläther, Diäthyläther und tert. Butyl-Methyl-Äther in der Gasphase. In: Berichte der Bunsengesellschaft für physikalische Chemie, 83: 532-538.
• Burger J., Siegert M., Ströfer E., Hasse H., (2010) Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. In: Fuel, 89, Issue 11: 3315-3319
• Schmitz N., Ströfer E., Burger J., Hasse H. (2017) Development of a Novel Process for the Large-scale Production of OME Fuels from Formaldehyde and Methanol. In: Petrochemistry and Refining in a Changing Raw Materials Landscape. DGMK International Conference, Oct. 9 - 11, Dresden, Germany
OME:
•Diesel Component: Mixture of Poly-Oxy-Methylen-Di-Methyl-Ethers
•Properties & Application: Fully miscible with conventional diesel fuel or application as stand-alone-fuel in diesel engines or dual fuel engines (Zündstrahlmotor)
•Efficiency: Strongly reduces soot formation in diesel engines & breaks the soot - NOx trade-off in present diesel engine operation
•Market driver: "diesel - gate" of diesel passenger cars; heavy duty diesel applications (buses, locomotives, vessels, trucks); safe fuel for fuel cell applications
•Potential partners: bus fleet operators, oil companies, engine builders
• Müller S., Ströfer E., Kohns M., Münnemann K., von Harbou E., Hasse H. (2023) Investigation of Partial Oxidation of Methane in a Cold Plasma Reactor with Detailed Product Analysis. In: Plasma Chemistry and Plasma Processing, 43: 513-532.
• Müller S., Ströfer E., Kohns M., Münnemann K., von Harbou E., Hasse H. (2024) Conversions and selectivities in cold plasma partial oxidation of methane. In: Plasma Processes and Polymers, e2400027.
Vorlesungsbetreuung / Sprechzeiten
Vorlesungsbetreuung
- -
Sprechzeiten
Nach Vereinbarung
Werdegang
- Studium der Chemie mit Schwerpunkt physikalische Chemie in Göttingen, Chicago und Darmstadt
- 1981 - 2011 Mitarbeiter der chemischen Industrie in verschiedenen Funktionen (Produktionsbetrieb, Sicherheit und Umweltschutz, Forschung und Entwicklung, Invention & Innovation, Technical Expertises)
- Achievements: Produktionsprozesse für Anorganika und Polyurethanvorprodukte in Europa, Nordamerika und Asien